針對標靶掃描、全站儀輔助等因素造成掃描作業過程的復雜繁瑣,提出了集成RTK的三維激光掃描技術測量地形的整體方案。采用網絡RTK同軸同步測量掃描站坐標;兩級拼接策略:地物點粗拼接與基于面搜索的ICP準確配準;采用測塊四角或周邊RTK點進行點云準確定向;采用自主研發的點云測圖平臺進行地形測繪。通過幾種典型地形的實驗驗證,該方案使得掃描作業效率提高了約5倍,與現行全野外數字測圖方法比較,作業效率提高了約3倍。基于全站儀的全野外數字測圖方法仍是1∶500大比例尺地形測繪的主流方法,隨著測圖軟件的不斷更新,該方法的內業制圖效率得到較大提升,但是外業仍需投入大量人力跑尺采點。三維激光掃描技術是測繪領域的高新技術,獲取的數據由點云和影像組成,不僅記錄了掃描對象的坐標數據和尺寸信息,更能自動記錄其拓撲與紋理信息,使得傳統點測量向“形測量”轉化[1]。與傳統測量手段相比,三維激光掃描技術具有不用照準部、掃描作業自動化、數據記錄自動化、獲取的數據信息豐富等特點[2],已應用于古建筑測繪、虛擬現實、變形測量、林業調查等領域。文獻[3-12]嘗試采用三維激光掃描技術代替傳統全野外數字測圖方法,以減輕測量人員的外業工作強度,海克斯康三次元改造,但是這些實驗普遍存在作業面積小,精度評定點數少等特點,不具說服力,代表性不強。
雖然三維激光掃描儀單測站采集數據精度高、速度快,但是要獲取完整的地形點云數據,則需多站掃描拼接。文獻[3-12]的三維激光掃描儀測量地形的作業方法,采用全站儀或GPS-RTK進行控制測量、布設并測量標靶,準確掃描標靶,基于標靶進行內業測站間拼接和坐標轉換,從而得到大地坐標系下地形的點云數據,效率低、工作量大,僅在精細地形測繪[8-9]、地物單一的礦山地形測繪[3,黔東南海克斯康三次元,6,10]、難及區域的地形測繪[5,11]等方面得到了嘗試應用。
造成三維激光掃描作業過程復雜繁瑣,制約了其在地形測量方面推廣應用的主要因素有:
(1)標靶:布設標靶、測量標靶、掃描標靶、回收標靶、內業提取標靶等一系列針對標靶的操作[3-11],使得每測站耗時估計增加約5min。
(2)全站儀:采用全站儀布設導線[8],然后測量標靶,使得每測站平均增加至少3min。
(3)對中整平:在控制點上布設掃描測站,要求對中整平,使得每測站耗時增加1~2min[3-8,12]。
(4)三腳架: 采用三腳架固定儀器,測站轉站時,為保護掃描儀需關機,下一站重新開機并初始化,使得作業時間增加至少2min[3-12]。
(5) 測圖軟件: 多種軟件組合使用,缺少專業的基于三維點云的地形測繪軟件[4-12]。
重慶欣晟泰提供,歡迎來電垂詢
1) 多功能箱體:多功能箱有各種已標定的標準量,通過對這些標準量的測
量,海克斯康三次元維護,可以得出坐標測量機的檢測誤差。
2) 標準量塊法:用長度分別為長軸滿行程1/3,1/2和1/4的3種量塊進行
測量,一般將量塊放在測量空間中部,與其對角線找正,海克斯康三次元經銷,也可用步距規進行細致的檢測。
3) 空間球板法:在一平板的不同高度上分布著一系列鋼球,預先對球間距
進行精密標定。用測量機對球間距進行采樣時,根據被測值與標定值之間的差值可以知道測量機的檢測誤差。
4) 磁性球頭棒法:磁性球頭棒是由一根兩端固定高精度鋼球的棒和磁性球
座組成,它以球頭棒的球心距作為標準量。當球頭棒在測量空間轉動測量時,將棒長的測量值與標準值相比,就可以知道球心距的測量誤差。 5) Ren ishaw檢測規:其工作原理類似于磁性球頭棒。檢測規的轉臂在測
頭的帶動下可以在測量空間內旋轉,形成標準圓弧。轉臂長度已經精密標定,測量得到的坐標值與理想坐標值的差值為測量機各個軸向的空間誤差值。
6) 激光干涉儀法:以雙頻激光干涉儀為基礎儀器,進行位置誤差、直線度
誤差、角運動誤差和垂直度誤差的測量。采用雙頻激光干涉儀法和電子水平儀對各個單項誤差逐一測量,這種方法精度很高,但測量時間較長,而且儀器價格昂貴,對操作人員水平要求較高。在多數情況下,可以選取一些特殊的位置,使得僅有一部分幾何誤差對總的空間誤差起作用,然后根據單項幾何誤差的性質,用高次多項式逼近,用較少的未知數求解,后分離出全部21項誤差,達到高精度測量的要求
您好,歡迎蒞臨禮之鑫,歡迎咨詢...
![]() 觸屏版二維碼 |